Skip to Content

Prediction-powered Generalization of Causal Inferences

PEOPLE
JOURNAL
ICML 2024 Read the Article
ABSTRACT Causal inferences from a randomized controlled trial (RCT) may not pertain to a target population where some effect modifiers have a different distribution. Prior work studies generalizing the results of a trial to a target population with no outcome but covariate data available. We show how the limited size of trials makes generalization a statistically infeasible task, as it requires estimating complex nuisance functions. We develop generalization algorithms that supplement the trial data with a prediction model learned from an additional observational study (OS), without making any assumptions on the OS. We theoretically and empirically show that our methods facilitate better generalization when the OS is "high-quality", and remain robust when it is not, and e.g., have unmeasured confounding.

Contributors: Ilker Demirel, Ahmed Alaa, Anthony Philippakis
image description